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Electromagnetic Theory of the Loosely Braided
Coaxial Cable: Part I

JAMES R. WAIT, FELLOW, IEEE

Absfracf-A solution to Maxwell’s equations subject to boondary
conditions on counterwound helical wires is achieved. The helices are
contained in a cylindrical surface that is concentric to a perfectly con-
ducting center conductor of circular cross section. The permittivity of

the annular region may be different from that of the exteraal region.
The excitation is taken to be symmetrical about the cable which leads

to a considerable simpliieation of the formulation. The key step is to
recognize that the assumed form of the current on the thin helical wires

is a spatiat harmonic expansion that leads to a donbly infinite expansion,

in such harmonics, for the resultant fields. The inherent complication
of the problem results from the intereuupling between the spatial hnr-
monics of the helix currents. Various generalizations of the theory are
also indicated.

INTRODIJCTION

A

BRAIDED coaxial cable can be envisaged as a com-

posite counterwound helical structure with a concentric

center conductor. While the actual geometry varies greatly

from one cable to another, the basic concept is that each

helix carries a current that interacts with neighboring

helices and with the, center conductor and the insulating

dielectrics. Much progress has been made in understanding

the operation of braided coaxial cables by postulating

equivalent circuit or transmission-line parameters that

characterize, in some sense, the mean electrical properties

[1], [2]. An example of this approach is to represent the

braided-wire sheath by a thin uniform cylindrical shell

with a specified transfer impedance that relates the axial

electric field and the discontinuity of the tangential magnetic

field [3], [4]. Obviously, such a parameter has great

utility when the performance of the cable in a complicated

environment is to be determined. While the surface-transfer

impedance of the sheath and related parameters can be

measured, it seems that a basic electromagnetic analysis

of some idealized cases is badly needed. It is really surprising

that such a general analysis has not been attempted before

now although some related theoretical work in connection

with traveling-wave tubes has been performed [5]. Also,

we should call attention to some important studies by

Latham [6] and also by Lee and Baum [7] who put the

transmission-line theory on a firmer basis.

Our immediate purpose, then, is to formulate the problem

of a cylindrical structure that consists basically of a dielectric-

coated conductor that is sheathed by a finite number of

counterwound helices. Our first task will be to obtain the
fields of a single helix that carries a filamental current that

can be ~represented by a spatial harmonic expansion. We
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Fig. 1. Perspectiveview of counterwound helices and planar develop-
ment of the cylinchical surface.

then add the fields of the counterwound helix and the

prescribed incident field. An impedance boundary con-

dition at the surface of the helical wires is then applied.

The resulting infinite set of equations can be solved, in

principle, for the amplitudes of the individual spatial

harmonics of the filamental currents. In concept, this

aspect of the problem is the same as used for determining

the currents induced on a rectangular wire mesh by an

incident plane wave [8], [9]. Also, it should be mentioned

that Casey [10] has solved a similar problem as posed here,

but he assumed initially that the filamental currents were

uniform. The validity of this assumption could be questioned

in the general case of counterwound helices.

BASIC FORMULATION OF PROBLEM

With respect to a right-handed cylindrical coordinate

system (P,+,z), we can define a single thin-wire helix by

the equation @ = (z/po) tan ~. Here P. is the radius of the
cylindrical surface that is common to the helix and @ is

the pitch angle as illustrated in Fig. 1. The ,center conductor

of radius a is assumed to be perfectly conducting. As

indicated below, the helix wires may be imperfectly con-

ducting and characterized by an appropriate impedance

parameter that relates the filamental current to the tangential
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electric field. The region external to the helix (i.e., P > Po)

is taken to be free space with permittivity 8.. An insulating

dielectric of permittivity e is assumed to occupy the con-

centric region PO > p > a. Thus we neglect any external

dielectric jacket and possibly 10SSY external coatings

although they would not introduce any new basic dif-

ficulties (just more complexity), The whole region external

to the center conductor and the sheath wires is taken to

have the same magnetic permeability p. In what follows,

all field quantities will be taken to vary with time according

to exp (icot).

In accordance with the previous discussion, and for

reasons that will become evident below, we adopt the

following representation for the current 1(z) in the helix

at the axial coordinate z:

I(z) = ~ I. exp (- i/?oz) exp
~.-~ (-’?2) ‘1)

where the summation over m extends over all integers,

including zero, from – co to + Q. We note here that /30

is the mean propagation constant, in the z direction for

the current while p is the axial period or pitch of the helix.

The coefficients 1. are to be determined later but for the

time being we will consider the fields that result from this

helical current.

To facilitate the analysis, we now observe that the com-

ponents of the surface current density in the cylindrical

surface at p = PO are

jz(~,z) = ~(z) Cos 4(1/Po)X# – (2~/P)z) (2)

and

j@(Az) = I(z) sin IWPO)N4 – (21T/P)z) (3)

where the Dirac or impulse function can be written in its

spectral form

6(+ – (2z/p)z) = & ~~~ exp [in(# - (2n/p)z)] (4)

where the summation over n extends over all integers

including zero. Thus, on combining (l)-(4), we obtain

jz(dw) = c% ~ ~ 1. exp (-i/l.,nz) exp (in~) (5)

and
.

jJAa = * ~ ~ I. exp (-i/l.,#) exp (in+) (6)

where ~~,. = flo + (2n/p)(wz + n). The double infinite

summations over m and n, in (5) and (6), and in the sub-

sequent equations are understood.

FIELD REPIUZSENTATIONS

In general, for a homogeneous region, we can express
the vector fields E and If in terms of Hertz vectors of the

electric type H and of the magnetic type II*. Thus

E = – ijxo curl II* + (k2 + grad div) II (7)

and

H = ieo curl II + (k2 + grad div) II* (8)

where k = (q.t)l’2CJ is the wavenumber for the homo-

geneous region under consideration. For cylinchica!

structures, it usually seems most convenient to choose these

so that z components, denoted by II and IS*, respectively,

are nonvanishing [11]. Then the field components can be

obtained from

– ipco i?II* az ~
Eo=— — —

P a~ + ap az

az ~.
Hp=~~+—

P a+ ap az

an* +la2n
E4=ipco — -—

ap P a~ a.z

an 1 62 ~.
H+= –itico–+— — (lOb)

p ad a.2

‘z= (k2+ap )

JY_ ~’

az2

(9a)

(9b)

(lOa)

(ha)

‘Z=t%w (Ilb)

These will be the appropriate forms to employ for the

homogeneous region a c p < po. In the external region

p > Po, we replace z by to and k by k. where k. = (eo~)l/2co.

Taking a hint from the forms adopted in (5) and (6), we

choose

H = ~ ~ H.,. exp (– iflm,~) exp (in@) (12)

and

z) exp (in@) (13)II* = ~ ~ lTM,m* exp (– il&

where 11.,~ and Il.,” * are functions of p only. Since

(V2 + ko2)ll = O in the region p > PO, it is evident that

an appropriate solution is

n m,n = Am,nKn(um,np) (14)

where Kn is the modified Bessel function of the second type

of order n and

v~,. = (fl~,~ – ko2)”2 = i(k02 – fl~,~)l’2.

The coefficient Am,. is yet to be determined. In a similar

fashion, for p > po, we can also write

lT~,.* = A~,.*K@~,#). (15)

In seeking the appropriate form of the solutions for the

region a < p -= PO, we require that both E@and J% should

vanish at p = a. This leads to the adoption of the following

forms for this region:

n in,n = B~,nZ,(U~,”P) (16)

where

Z~(Up) = ~~(up) – [I@a)/K@a)]K.(up)

and

IS~,n* = B~,.*Zn*(U~,”P)

where

Z“*(UP) = In(up) – [IJ(ua)/KJ(ua)]K,(w).

(17)
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Here

~,~ = (fl~,< - k2)1’2 = i(k’ : Bm,n’)’t’u

and we have also introduced the modified Bessel function

of the first kind 1.. The prime over the Bessel functions

indicates differentiation with respect to the indicated

argument or more precisely Zw’(us) = dl.(x)/dx evaluated

at x = ZUZ.

APPLICATION OF SHEATH BOUNDARY CONDITIONS

Now the conditions at the sheath are that the tangential

electric fields are continuous and that the tangential

magnetic fields are discontinuous by the amount of surface

current. An explicit statement is

Ez(pO-) = E=(pO+) (18a)

lfz(p~-) = Hz(pO+) + j@(4@ (18b)

.%(PO-) = EJPO+)

Iq(po-) = HJPO+) –

Using (9)-(17), these lead easily to

equations:

U2ZB = V2KA

– U2Z*B* + V’&t* =

(18c)

.iZ(d)z). (18d)

the following set of

(19a)

J sin ~ (19b)

ipmZ*’B* + (n~/po)ZB = ipcovK’A* + (n~/po)KA

(19C)

—i&owZ’B + (n/?/po)Z*B*

+ i80covK’A – (n/?/po)KA* = –J cos tj (19d)

where A = Am,., B = B~,., A* = A~,.*, B* = B~,., u =

um,n, v = ‘m m z = Zn(um,”po), z’ = Z“’(%,d%), Z* =
‘ *’ = Z*’(um No), K = &(um,#o)> : =zn*(um,npo), z

K.’(vm,.Po), B = A,., and ~ = Zm/(27cpo). The four linear
equations (19a)–(19d) may be solved explicitly for the co-

efficients A, B, A*, and B* in terms of J. Thus, for example,

[(

v z*’
A= ipwv– —K– K’

)(

n~
—Jsin$– Jcos$

u z* ZPpo )

()

nfl K v2.—
2- 11 ~~.lsin~ D-l (20)

Po

and

‘*=[%(%K--K’)Jsin’

(–Jsin’J-J’0s4:K(ND-’n/?—
u*po

(21)

where

[
D = ko2v2 : ~

H

.5 Vz’K–K’ ––—K–K’
u z* eouz 1

- (:K)’(s-‘)2’22)
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The tangential electric fields in the region external to the

sheath (i.e., p > PO) are given by

+ ~ n/3m,tiAm,nKn(vm,”p)
1

“ exp (in@) exp (– i~~,”z) (23)

and

EZ = – ~ ~ v~,.2A ~,,K.(v~,.p) exp (in#) exp (– i/?m,.z)

(24)

where the coefficients Am,. and A~,.* are given in terms of

the current on the right-handed helix via (21) and (22).

Also we should remember that v~,n = ~~$. – ko’)ll’ and

~mm = Po + (2~/p)(m + n).
To obtain the fields of the current on the corresponding

left-handed helix we can proceed precisely in the same

fashion. This helix is defined by @ = – (2n/p)z at p = PO.

Also, for the case of usual concern, the current l(z) on this

helix will be the same as for the right-handed helix given

by (l). The exception discussed later is when the excitation

is not locally uniform about the cable. Thus, for this

symmetrical situation, the sheath current densities cor-

responding to (5) and (6) are

jz(~,z) = * ~ ~ 1~ exp (-ij~,.z) exp (in#) (25)

and

jo((),z) = -*T ~ ~ Im exp (-i~m,”z) exp (imj)

(26)

where

fire,” = flm,-n = 00 + (Wp)(m – 4.

As indicated, we place a circumflex over the quantity when

it refers to the changed form needed for the left-handed helix.

The tangential electric fields in the region external to the

sheath, that are analogous to (23) and (24), are

AO = ~ ~ [ipcov~,_m~~,n*Kl(v~,-.p)

+ ~ n&-#~,~K”(v~,-i~)
P 1

“ exp (in+) exp (– i~~,-.z) (27)

and

fiz = – ~ ~ v:,-.fi~,.K.(v~, _.p)

Qexp (in@) exp (– ijl~,..”z). (28)

The coefficients ~ and 2* are given by (20) and. (21) with

the reversed sign for ~ (i.e., replace sin # by - sin 4).

We also should note that K and Z are replaced by 1?

and $? defined by I? = K.(v~, -npo) and ~ = Z.(u~, _.po).
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Fig. 2. Microscopic view of segment of helix wire.

It is useful now to note, according to (20) and (21), that

where the P’s are explicitly known in terms of the counter-

wound helix geometry and the specified value of the axial

wavenumber PO.

APPLICATION OF Wm BoummY CONDITION

We are now in the position to apply the impedance

condition at the helix wires. Since the wires themselves have

already been assumed to be very thin, the longitudinal

electric field at the surface of the wires is sensibly’ uniform

around the wire circumference. Thus, for convenience, we

choose to apply the impedance condition at the top of the

wires which by definition is the spiral z = (p/27c)@ +

clsin $, where c is the wire radius. This is indicated in the

sketch in Fig. 2. Also, because of the assumed rotational

symmetry, we need only apply the condition on one helix.

The corresponding condition on the other helix will be

automatically satisfied. Thus we need to apply

[(EZ + J!?Z)cos ~ + (E. + &@) sin ~ + EZP cos V]

= I(z)zw (30)

at p = PO and @ = (2rc/p)[z — c/(sin ~)]. Here Ezp is

the axial component of the “primary” field; it is the resultant

field that would exist at the surface p = P. for the same

cylindrical structure but in the absence of the helix wires.

As previously mentioned, EZP can be regarded as invariant

to ~ when PO is much less than the free space wavelength

(i.e., kopo << 1). The series impedance per unit length ZW

is determined by the local property of the wires and treated

as if they were straight [11]. This appears to be justified

always when c << PO. Thus, if the electrical constants of

the wires are o.,, eW,and ,uW,we would use the usual relation

Zw = [nw/(2nc)]~o(Ywc)/~l(Ywc) (31)

where VW = [ipWco/(crW + ieWco)]’/2 and yW = [ipW@(aW +

i&Wco)]1’2. As co + O this reduces to the expected dc form,

namely ZW ~ (aWzc2) -1.

Using (23), (24), and (27)-(29), the impedance condition

(30) now takes the form

(~ ~ I.R.,. exp -in
nm

~$)exp(-i~mz)

(

2?CC
+ X ~ I.&,. e~p – in -

)

“ ~’~(’”:z) “p (-ic~)

+ ~ E.p&,O exp
(-i?z)cos$

=Qmexp(-%)
(32)

where we have used m’ in place of m in the second term for
convenience in the subsequent manipulation. The coefficients

R and 1? are defined by

Rm,n = — ~,n2 cos $P~,aK@~,npo)v

+ iww~,” sin $P~,a*K.’(u~,.po)

+ sin $
— n/?~,~P~,aKn(v~,npO) (33)

Po

and

R*,n = – v;, _~ cos @~,.K@~, _.po)

— i~o.w~, _. sin tj~~,.*K.’(v~, -.po)

sin +
– — n/?~,_~~~,RK~(v.,_Epo). (34)

Po

Now in (32) we replace m’ by 2n + m, which means that

the factor exp (– i(2rc/p)mz) is now common to all terms.

Then, since (32) is to hold for all z, we obtain

+ Ezph.o COS ~

= ZWI~ (35)

which is to hold for all integer values of m from – co to
+ m. This, of course, is then an infinite set of equations

that must be solved, after appropriate truncation, for the

current coefficients Im.

Tm SPECIFICATION OF THE PRIMARY FIELD

At this point we should obtain the appropriate expression

for the primary field Ezp that is mentioned previously.

The incident plane wave is defined by

E = E. exp [iczop cos ~] exp (– i~oz) (36)

where a. = (/co2 – f102)’/2. Here we can identify PO with
k. cos 0, where Ois the angle subtended by the wave normal
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and the negative z axis. Now, in the vicinity of the cable,

we can assume for purposes of simplicity that Uop or

kOp sin 0 is much less than one. Also, under the same

condition, we only need to be concerned with the axial

component of the incident field since the transverse com-

ponents have a negligible interaction. This leads us to use

a quasi-static analysis [4] in order to determine the primary

field Ezp. Thus the required field forms for the coaxial

structure, in the absence of the helix wires, are

[ 1E= = ct2 P + ~ Q In 0.89LYp

}

(37)
n

fora<p<po

H4 = – (2/n)i&coQ/p (38)

and

E= = EOZ[l + R(I – i(2/n) in 0.89LXOp)]

)

(39)

for p > p.

H+ = –EOZ(2/z)eOcoR/(ao2p) (40)

where u = (k2 – j?,’)’l’. We now apply the boundary

conditions that E= is zero at p = a and that both EZ and

Ho are continuous at p = PO. Thus we readily deduce that

P = – (2/7r)Q in 0.89&a (41)

Q = – i(ede)(R/ct~2)E~~ (42)

and

Lzeao’ a
-. .

77 J

Then, in fact,

or, more explicitly,

EZP

Eoz
.

2&o (x2 p
i- —nlnfl

rcelx~ a

(

~+i:#ln Q
– in 0.89aopo

‘R --za
E LXO )“

GENERALIZATIONS AND CONCLUDING REMARKS

There is a generalization, as illustrated in Fig. 3,

(43)

(44)

(45)

that

we can mention briefly. If we have Q right-handed and Q

left-handed spirals, that are equispaced, the formulation

is only slightly more involved. For example, the equation

for the right-handed helices is

@ = (WP)(Z – (q/Q)) at P = P. (46)

where q = O, 1,2,3,”””, Q – 1. If the helices are all

made of identical wires, then the current on each can still

be given by (1) in view of the assumed azimuthal uniformity

of the excitation. But now, for example, the z component

of the surface current in the sheath for the right-handed
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Fig. 3. Planar development of multicounterwound helices (drawn
for Q = 5).

helices has the form

in place of (2). Then, using the spectral representation for the

impulse functions, we find that

jz@yz) — Cos *‘-1 +* +m- — ~ ~ ~ L exp (- UL,.Z)
2Zp0 q=O m=-cc .=-W

oexp ( – i2rmq/Q) exp (in@) (48)

with a similar form for jo(+,z). Thus, on comparing with

(5) and (6), it is evident that the essential modification of

the formulation is to introduce the factor exp (-i2rcnq/Q)

with a summation over the number of separate helices. In

dealing with the left-handed helices, we introduce a cor-

responding factor exp (+ i2znq/Q).

The boundary condition indicated by (30) still may be

applied at the one helix only. The resulting coupled equation

to determine the coefficients 1~ is again given by the follow-

ing modification of (35):

Q-1 +co

qzo(n=zm“’”” ‘xl’ (-iniaexd-i%%
+m

+ E R2.+.,. ew
~=-~ (-’”*)

~ ‘Xp(+i%w+m) ‘Ezp’”’OcOsti

= zwIm. (49)

Actually, there is some simplification to (48) and (49) by

noting that

wherel = O,-Jl, -12,-13,.”..

Another generalization that does not lead to any basic

difficulty, at least for symmetrical excitation, is to remove
the assumption of local uniformity of the excitation field,

This amounts to representing Ezp itself as a harmonic

expansion in the azimuth direction about the cable axis.

Such a modification is only necessary, however, when the

cable cross section becomes comparable with a wavelength.

In that case, we would also need to account for the presence
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of the transverse components of the exciting fields, in which

case the filamental currents on the counterwound helices

are no longer the same. In this situation, we would also

need to be concerned with whether the counterwound

helices were bonded at their intersections. In analog to the

work on planar wire meshes (e.g., Hill and Wait [9]), the

difference between bonded and unbended wire intersections

could be significant for the nonsymmetrical component

of the excitation field. One method to analyze this situation

is to allow the right-handed and the left-handed helices

to have slightly different radii. For the symmetrical excita-

tion, which in fact is a good approximation at low fre-

quencies, the final results would not be very sensitive to

the difference between the helix radii. Thus we should not

expect the bonding to have a major influence on the low-

frequency performance of the cable. Nevertheless, this is a

subject that should be investigated in a quantitative sense.

The influence of a dielectric jacket and/or Iossy external

coating on the cable can be considered in a straightforward

manner. Basically, this amounts to introducing radial wave

functions in the region external to the sheath that satisfy

the appropriate boundary conditions at the one or more

new cylindrical interfaces. Finally, we should mention that

the corresponding natural modes of propagation on the

composite structure are obtained by simply letting the

incident field be zero and then setting the (infinite) deter-

minant of the coefficients of 1~ in (35) or (49) to zero and

solving for the propagation constant(s) i/lO. Such solutions

would include the surface waves that have their energy

confined to the region of the sheath.

In Part II, we consider the numerical aspects of this

general problem and the results are applied to specific

cable configurations.

&pENDIcEs

A. A NOTE ON CONVERGENCE

The series over n have the following form:

S= ~ A.exp
[

-in-@- .1 (51)
n=-m p sin @

The convergence may be very poor since c is small. Thus,

as in other similar problems, there is some merit in sum-

ming the higher order terms in closed form by making use

of the fact that the coefficient An admits to an asymptotic

expansion of the type

(
~(l)

)Iim A.-An A(o)+— ““” .
n’ +

(52)
(ln\+co)

This suggests that we write

( )[
S=AO+ ~ Am–nA(0)–~ exp –in-@-

*=1 n p sin +1
(

A(l)+~ A_n – nA(0) – —
n=l n )

[

2nc
“ exp +in — 1+AS

p sin+
(53)

where

21rc
AS = 2A(1J ~ ~ cos n —

In p sin $

( 2m

)
= _2A(l) in 2 sin _ .

p sin ~
(54)

Here we have utilized the fact that

for all real x >0.

B. FIELD AVERAGING

In general, a field component ~ has the following doubly

iniinite series representation

* = 5 Y *.,. exp (– i~m,nz) exP (in#) (55)
“=-~ *=—y)

where t~,. is a coefficient that does not depend on the

coordinates # and z. Now when dealing with a coaxial

cable with electrically small radius and for the case where

the axial period of the braid is small, the far field scattered

from the cable only involves the term ‘for n = m = O. It

also follows rather simply that the “average” field ~ near

or at the cable also can be described by this term. This

follows from the fact that

In view of this reasoning, it follows that a suitable defini-

tion of the eflective axial impedance Z.(ij?o) of the cable is

~ Eoz- vo,02Ao,oKo(vo, opo)

2ni&o@Ao,o
(57)

where Vo,o = icto. This quantity is a useful description of

the cable when its behavior in a more complicated environ-

ment is to be considered. It is stressed that Z.(i/?o) is a

function of axial wavenumber.
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Vector Variational Formulation of
Electromagnetic Fields in

Anisotropic Media
A. KONRAD, MEMBBR, IEEE

Abstract—Maxwell’s equations can be cast into a basic differential

operator equation, the cmlcarl equation, which lends itself easily to
variational treatment. Various forms of this equation are associated

with problems of practical importance. The formulation includes the
treatment of loss-free anisotropic media. The boundary conditions

associated with electromagnetic-field problems are treated in detail and

the uniqueness of the solution is discussed. A functional is derived for

the eurleurl equation in Cartesian aad cylindrical coordinates.

I. INTRODUCTION

D

UE TO the broad variety of practical applications

of waveguides, resonators, and other microwave

devices, the development of methods to solve the associated

electromagnetic-field problems has received a great deal of

attention in the past two decades, Such electromagnetic

boundary value problems, with the exception of isotropic

waveguides, require a formulation in which the electric

and magnetic fields are treated as vector quantities. In

recent years, a. variety of methods for the solution of

homogeneous isotropic waveguide problems appeared in

the literature; these have been reviewed by Wexler [1],

by Davies [2], and by Ng [3]. With a few exceptions [4]-

[9], [29], the tendency in recent years was to formulate

the inhomogeneous isotropic waveguide problem in terms

of the longitudinal electric (,!?,) and magnetic (HZ) field

components [10]–[1 8].

As noted by Wexler [1] in 1969, there have been many

proponents and only a few attempts to formulate electro-
magnetic-field problems in terms of all three components

of the field vectors. Among the, attempts one must mention
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Barrington’s well-known monograph [4] and Gupta’s

doctoral dissertation [5] on field solution in resonant

cavities filled with an inhomogeneous anisotropic medium.

The moment method employed by these authors is es-

sentially a projective method in which the field components

in a cavity or waveguide are expanded in terms of the field

components of the empty cavity or waveguide modes.

In 1967 Hannaford [10] proposed an extension of his

variational/finite difference method for homogeneous

isotropic waveguides to plasma- and ferrite-filled wave-

guides. Hannaford’s proposal involves only the longitudinal

field components. For inhomogeneous media, the resulting

coefficient matrix in Hannaford’s formulation becomes

indefinite above the 45° “air-line” cm the dispersion diagram.

Since 1967, this shortcoming of two-component formula-

tions has reoccurred in a number of other finite-difference

and finite-element variational methods [11]–[1 7]. Hanna-

ford dismissed Berk’s often quoted variational expressions

which were published in 1956 [6] as being more complicated

than the EZ-HZ formulation. Berk derived three- and six-

component vector variational expressions in the form of

Rayleigh quotients for the resonance frequencies of a

resonator filled with loss-free, anisotropic, homogeneous

or inhomogeneous media.

The only three-component vector variational formula-

tion for electromagnetic-field problems appearing in recent

years is due to English and Young [7]. They select the
E-field formulation over H on the basis of the number of

Dirichlet boundary conditions to be satisfied. The authors

list the advantages of the three-component vector formula-

tion as reduced matrix size and denser coefficient matrices

in comparison with the six-component formulation given

by English in his doctoral dissertation [8] andin two papers

by English [9], [23] which appeared in 1971. However,


