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Electromagnetic Theory of the Loosely Braided
Coaxial Cable: Part I

JAMES R. WAIT, FELLOW, IEEE

Abstract—A solution to Maxwell’s equations subject to boundary-

conditions on counterwound helical wires is achieved. The helices are
contained in a cylindrical surface that is concentric to a perfectly con-
ducting center conductor of circular cross section. The permittivity of
the annular region may be different from that of the external region.
The excitation is taken to be symmetrical about the cable which leads
to a considerable simplification of the formulation. The key step is to
recognize that the assumed form of the current on the thin helical wires
is a spatial harmonic expansion that leads to a doubly infinite expansion,
in such harmonics, for the resultant fields. The inherent complication
of the problem results from the intercoupling between the spatial har-
monics of the helix currents. Various generalizations of the theory are
also indicated,

INTRODUCTION

BRAIDED coaxial cable can be envisaged as a com-
A posite counterwound helical structure with a concentric
center conductor. While the actual geometry varies greatly
from one cable to another, the basic concept is that each
helix carries a current that interacts with neighboring
helices and with the center conductor and the insulating
dielectrics. Much progress has been made in understanding
the operation of braided coaxial cables by postulating
equivalent circuit or transmission-line parameters that
characterize, in some sense, the mean electrical properties
[1], [2]. An example of this approach is to represent the
braided-wire sheath by a thin uniform cylindrical shell
with a specified transfer impedance that relates the axial
electric field and the discontinuity of the tangential magnetic
field [3], [4]. Obviously, such a parameter has great
utility when the performance of the cable in a complicated
environment is to be determined. While the surface-transfer
impedance of the sheath and related parameters can be
measured, it seems that a basic electromagnetic analysis
- of some idealized cases is badly needed. It is really surprising
that such a general analysis has not been attempted before
now although some related theoretical work in connection
with traveling-wave tubes has been performed [5]. Also,
we should call attention to some important studies by
Latham [6] and also by Lee and Baum [7] who put the
transmission-line theory on a firmer basis.

Our immediate purpose, then, is to formulate the problem
of a cylindrical structure that consists basically of a dielectric-
coated conductor that is sheathed by a finite number of
counterwound helices. Our first task will be to obtain the
fields of a single helix that carries a filamental current that
can be represented by a spatial harmonic expansion. We
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Fig. 1. Perépective view of counterwound helices and planar develop-~
ment of the cylindrical surface.

then add the fields of the counterwound helix and the
prescribed incident field. An impedance boundary con-
dition at the surface of the helical wires is then applied.
The resulting infinite set of equations can be solved, in
principle, for the amplitudes of the individual spatial
harmonics of the filamental currents. In concept, this
aspect of the problem is the same as used for determining
the currents induced on a rectangular wire mesh by an
incident plane wave [8], [9]. Also, it should be mentioned
that Casey [10] has solved a similar problem as posed here,
but he assumed initially that the filamental currents were
uniform. The validity of this assumption could be questioned
in the general case of counterwound helices.

BAsic FORMULATION OF PROBLEM

With respect to a right-handed cylindrical coordinate
system (p,$,z), we can define a single thin-wire helix by
the equation ¢ = (z/p,) tan Y. Here p,, is the radius of the
cylindrical surface that is common to the helix and ¥ is
the pitch angle as illustrated in Fig. 1. The center conductor
of radius @ is assumed to be perfectly conducting. As
indicated below, the helix wires may be imperfectly con-
ducting and characterized by an appropriate impedance
parameter that relates the filamental current to the tangential
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electric field. The region external to the helix (i.e., p > po)
is taken to be free space with permittivity ¢,. An insulating
dielectric of permittivity ¢ is assumed to occupy the con-
centric region p, > p > a. Thus we neglect any external
dielectric jacket and possibly lossy external coatings
although they would not introduce any new basic dif-
ficulties (just more complexity). The whole region external
to the center conductor and the sheath wires is taken to
have the same magnetic permeability u. In what follows,
all field quantities will be taken to vary with time according
to exp (iwt).

In accordance with the previous discussion, and for
reasons that will become evident below, we adopt the
following representation for the current I(z) in the helix
at the axial coordinate z:

+ o
I2)= 3 I,exp(~ifoz)exp (—-i 2nm z) )
m=—-w : p
where the summation over m extends over all integers,
including zero, from —oo to +c0. We note here that f,
is the mean propagation constant, in the z direction for
the current while p is the axial period or pitch of the helix.
The coefficients I, are to be determined later but for the
time being we will consider the fields that result from this

helical current.

To facilitate the analysis, we now observe that the com-
ponents of the surface current density in the cylindrical
surface at p = p, are

J($:2) = I(z) cos Y(1/po)é(¢ — (2n/p)z) @

and
Jo($,2) = I(2) sin Y(1/po)o(¢ — (2n/p)2) 3

where the Dirac or impulse function can be written in its
spectral form

+ o

5 - @ajpy) = 5= % _explinis ~ Cuip))] @

where the summation over n extends over all integers
including zero. Thus, on combining (1)~(4), we obtain

JAb.2) = "2‘%"’ Y Y I, exp (—ifns?) €xp (ind)  (5)

and

182 = Y55 1 exp (<iBp,2) exp () ©)
2rpo

where B, = Bo + (2n/p)im + n). The double infinite
summations over m and n, in (5) and (6), and in the sub-
sequent equations are understood.

FIELD REPRESENTATIONS

In general, for a homogeneous region, we can express
the vector fields E and H in terms of Hertz vectors of the
electric type IT and of the magnetic type IT*. Thus

E = —ipw curl IT* + (k> + grad div) IT )
and ‘
H = igo curl IT + (k* + grad div) IT* (8)
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where &k = (ew)'?w is the wavenumber for the homo-
geneous region under consideration. For cylindrical
structures, it usually seems most convenient to choose these
so that z components, denoted by IT and IT*, respectively,
are nonvanishing [11]. Then the field components can be
obtained from

. * 2
E, = e 0 (92)
p 09 op 0z
icw OI1 0?
H, =222 IT* 9b
P p 99 + dp 0z ®)
E =iwéri*+}- o (10a)
o = e T pag oz
o 1 8
H, = —isw & + = m* 10b
AR PRI F P (100)
2 62 H .
E, = |k* + ——) 11a
( 0z* (1a)
H, = (k2 + fi) * (11b)
# 022 )

These will be the appropriate forms to employ for the
homogeneous region a < p < py. In the external region
p > po, wereplace e by &, and k by ko where ko = (o) 0.

Taking a hint from the forms adopted in (5) and (6), we
choose

O =Y Y I0,, exp (=B .2) exp (ind) (12)

and

o* = Y, ¥, I, ,* exp (—iBnq2) exp (ing)  (13)
where IT,, and II,,* are functions of p only. Since
(V? + koI = 0 in the region p > p,, it is evident that
an appropriate solution is

Hm,n = Am,nKn(vm,np) (14)

where K, is the modified Bessel function of the second type
of order n and

U = (ﬁm,n2 - k02)1l2 = i(koz - ﬁm,nz)”z'

The coefficient 4,,, is yet to be determined. In a similar
fashion, for p > p,, we can also write

0" = Apn*KOmap)- (5)

In seeking the appropriate form of the solutions for the
region a < p < po, We require that both E, and E, should
vanish at p = a. This leads to the adoption of the following
forms for this region:

Hm,n = Bm,nzn(um,np) (16)
where ‘
Z(up) = Lup) — [L(ua)/ K, (ua)]K,(up)
and
Oy = By n*Zy*(thm,nP) (amn
where

Zn*(up) = In(up) - [In,(ua)/ Kn,(ua)]Kn(up)'
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Here
Upp = (ﬁm,nz __ k2)1/2 = l(k2 — ﬂm,nz)llz

and we have also introduced the modified Bessel function
of the first kind I,. The prime over the Bessel functions
indicates differentiation with respect to the indicated
argument or more precisely Z,'(ua) = dl(x)/dx evaluated
at x = ua.

APPLICATION OF SHEATH BOUNDARY CONDITIONS

Now the conditions at the sheath are that the tangential
electric fields are continuous and that the tangential
magnetic fields are discontinuous by the amount of surface
current. An explicit statement is

E(0o7) = E(po*) (18a)
Hpo™) = H(0o") + jo(®:2) (18b)
Ey(po™) = Eg(po™) (18¢)
Hy(po™) = Hylpo™) — ji($:2). (18d)

Using (9)—(17), these lead easily to the following set of
equations:

u*ZB = v*KA (19a)
—u2Z*B* + v’KA* = Jsiny (19b)
iuwZ*' B* + (nB/po)ZB = iuwvK’'A* + (nf/py)KA
(19¢)
—icouZ'B + (nf/py)Z*B*
+igqvK'A — (nBlpo)KA* = —Jcosyy  (19d)
where 4 = Am,n, B = Bm,m 4* = Am,n*’ B* = m,ns u=

Upps U = Upyps Z = Zn(um,np0)9 zZ' = Zn,(um,npo)a Z* =
Zn*(um,npo)s VAR Z*I(um,npo)’ K = Kn(vm,npo)s K =
K,/ (U np0)s B = B and J = I/(2np,). The four linear
equations (19a)~(19d) may be solved explicitly for the co-
efficients 4, B, A*, and B* in terms of J. Thus, for example,

. %7
A= [iywu(l’z— K—K’) (iﬁ—Jsin¢—Jcos¢)
MZ* 2

U= po
2 . 7
_@K(BE_1)EL‘£’Z_Jsm¢]D”‘ (20)
Po. \u u Z*
~and
ko?vZ* (e v Z' .
A*=[L_(___K--K')J31n¢
u Z* \gou Z
2
_(leﬁ JSinl//—JCOS!//)ﬂ;K('D—"‘I)]D_I
upo Po u?
(21)
where
£ 34 ’
D=k02v2[2§_K_K'] [ifZ-K—K’]
lu z* g Z
2 2 2
_(@K) (”2_1). 22)
Po u
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The tangential electric fields in the region external to the
sheath (i.e., p > p,) are given by

E,=YY [iuwvm,nAm,,.*K,:(vm,.,p)

+1 nﬁm,,,Am,,,K,xv.,.,,.p)]
P
© €Xp (ln¢) ¢Xp (_iﬁm,nz) (23)
and i

Ez = = Z 2 vm,nzAm,nKn(vm,np) €Xp (ln¢) €xp (—iﬁm,nz)

(24)

where the coefficients 4,, , and 4, ,* are given in terms of
the current on the right-handed helix via (21) and (22).
Also we should remember that v,,, = (Bu.. — ko*)'/* and
ﬁm,n = ﬁo + (27'[/}7)(}71 + n)°

To obtain the fields of the current on the corresponding
left-handed helix we can proceed precisely in the same

‘fashion. This helix is defined by ¢ = —Qn/p)z at p = py.

Also, for the case of usual concern, the current /(z) on this
helix will be the same as for the right-handed helix given
by (1). The exception discussed later is when the excitation
is not locally uniform about the cable. Thus, for this
symmetrical situation, the sheath current densities cor-
responding to (5) and (6) are

562 = VS S I exp (= ifn2) exp (ing)  (25)

2rpg
and
_ _siny i3 -
j¢(¢,Z) - 27[[)0 Z Z Im €Xp ( lﬁm,nz) €Xp (ln¢)
(26)
where

Bm,n = Bm,-n = ﬁO + (27r/p)(m - n)-

As indicated, we place a circumflex over the quantity when
it refers to the changed form needed for the left-handed helix.
The tangential electric fields in the region external to the
sheath, that are analogous to (23) and (24), are

E¢ = Z Z [iﬂwvm,—nzm,n*Kn’(vm,—np)

iy nﬁm,_nﬁm,,,K,.(um,_,,p)]
p

 exp (in) exp (= By, -n2) @

and

Ez == Z Z vrzn,—n;l\m,nKn(vm,—np)

* exp (ing) exp (—ifm,-nz). (28)
The coefficients A and A* are given by (20) and (21) with
the reversed sign for i (i.e., replace siny by —sin ).

We also should note that K and Z are replaced by K
and Z defined by R = K,(vn,—uPo) a0d Z = Z, (4, —nP0)-
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Fig. 2. Microscopic view of segment of helix wire.

It is useful now to note, according to (20) and (21), that

~

Am,n = Pm,nIm Am,n* = Pm,n*Im

and

App = Pruly  Apn* = Pyl 29
where the P’s are explicitly known in terms of the counter-
wound helix geometry and the specified value of the axial

wavenumber f,.

APPLICATION OF WIRE BOUNDARY CONDITION

We are now in the position to apply the impedance
condition at the helix wires. Since the wires themselves have
already been assumed to be very thin, the longitudinal
electric field at the surface of the wires is sensibly uniform
around the wire circumference. Thus, for convenience, we
choose to apply the impedance condition at the top of the
wires which by definition is the spiral z = (p/27)¢ +
¢/sin , where c is the wire radius. This is indicated in the
sketch in Fig. 2. Also, because of the assumed rotational
symmetry, we need only apply the condition on one helix.
The corresponding condition on the other helix will be
automatically satisfied. Thus we need to apply

[(E, + E)cosy + (Ey + Ep)siny + EP cos.t//]

= I(2)Z,, (30)
at p = p, and ¢ = 2n/p)[z — ¢/(sin ¥)]. Here E,? is
the axial component of the “primary” field; it is the resultant
field that would exist at the surface p = p, for the same
cylindrical structure but in the absence of the helix wires.
As previously mentioned, E,” can be regarded as invariant
to ¢ when p, is much less than the free space wavelength
(i.e., kopy <« 1). The series impedance per unit length Z,,
is determined by the local property of the wires and treated
as if they were straight [11]. This appears to be justified
always when ¢ « pq. Thus, if the electrical constants of
.the wires are o, &,, and u,,, we would use the usual relation

Z,, = [nw/@rc) Ho(rwe)/I1 (yue) (3D
where 7, = [in,0/(s, + ie,w)]Y? and y, = [in,w(0, +

ie co)]”2 As w — 0 this-reduces to the expected dc form,
namely Z,, — (o,,nc®) 1.
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Using (23), (24), and (27)-(29), the impedance condition
(30) now takes the form

- 2c '\ 2n
IR, ,€X (—in —-—f—) ex (—-i—mz)
; Z m EXP in P P

+ ZZI R, , exp (—m pimclll)

(. 4 ) ( 2 )
cexplin—z])exp|—I—mz
p p

+ Y E.P6,,0 €xp (——i Znm z) cos
m p

—ZWZI exp (—z%r-nz) (32)

where we have used =’ in place of m in the second term for
convenience in the subsequent manipulation, The coefficients
R and R are defined by

Rm,n = —vm,nz Ccos ‘/’P m,nKn(vm,npo)
+ iﬂwvm,n Sil'l lﬁP m,n*Kn,(vm,np 0)
+ sin

nﬁm,nP m nKn(vm,npo) (33)
Do
and
ﬁm,n = = Ur%t, —n COS ‘me,nKn(vm, —npO)
- iﬂwvm, ~-n Sin ‘//Pm,n*Knl(vm,—nPO)
sin l// P
- nﬁm, —nt ' m nKm(vm,—nPO)' (34)

Po

Now in (32) we replace m’ by 2n + m, which means that
the factor exp (—i(2n/p)mz) is now common to all terms.
Then, since (32) is to hold for all z, we obtain

P 2re )]
R, ,exp|—in I
[n=z~w mn %P ( psiny/l "
PR . 2me
+ [ 2 R2n+m,n CXp (—"’l . )] I2n+m
n=-—o0 14 Sln !,b

+ E,?5,, cos Y

= Z,In

(35

which is to hold for all integer values of m from — oo to
+ o0, This, of course, is then an infinite set of equations
that must be solved, after appropriate truncation, for the
current coefficients 7.

THE SPECIFICATION OF THE PRIMARY FIELD

At this point we should obtain the appropriate expression
for the primary field E,/? that is mentioned previously.
The incident plane wave is defined by

(36)

where oy = (ko> — Bo®)/%. Here we can identify B, with
kg cos 0, where 8 is the angle subtended by the wave normal

E = E, exp [ixyp cos ¢] exp (—ifyz)
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and the negative z axis. Now, in the vicinity of the cable,
we can assume for purposes of simplicity that ogp or
kop sin 0 is much less than one. Also, under the same
condition, we only need to be concerned with the axial
component of the incident field since the transverse com-
ponents have a negligible interaction. This leads us to use
a quasi-static analysis [4] in order to determine the primary
field E,?. Thus the required field forms for the coaxial
structure, in the absence of the helix wires, are

@37
fora < p < pg

E = qa? [P + 2 Qln O.89ap]
T

Hy = ~Q/nisw]p (38)
and
E, = Eo[1 + R(l — i(2/m) In 0.89%0p)] (39)
for p > pg
Hy = —Eo(2/m)eqwR/(0%p) (40)

where « = (k> — B,»)'%. We now apply the boundary
conditions that F, is zero at p = a and that both E, and
H, are continuous at p = p,. Thus we readily deduce that

P = —(2/7n)Q In 0.8%xa 41)
0 = —i(eo/e)(Rag>)Ey, (42)

2

2
T & Uy a

2 -1
i~In O.89ocop0] .
]

(43)
Then, in fact
EP=E| =a2gm (44)
pP=po 3 a
or, more explicitly,
£r i 2 fo 5-5 n 2o
E_z - > T & Oy a (45)
0z 1 4iZ (80 « mnfe _1n 0.89ocop0)
w\e oy’ a

GENERALIZATIONS AND CONCLUDING REMARKS

There is a generalization, as illustrated in Fig. 3, that
we can mention briefly. If we have Q right-handed and Q
left-handed spirals, that are equispaced, the formulation
is only slightly more involved. For example, the equation
for the right-handed helices is

¢ = 2u/p)z — @/Q) at p = p, (46)

where ¢ =0,1,2,3,--, 0 — 1. If the helices are all
made of identical wires, then the current on each can still
be given by (1) in view of the assumed azimuthal uniformity
of the excitation. But now, for example, the z component
of the surface current in the sheath for the right-handed
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helices has the form

cos 2n
6.2 = 1) =Y ‘” ¥ (o -2
7=0 p
in place of (2). Then, using the spectral representation for the
impulse functions, we find that

T Y Y Lewc- iBrm,n2)

2 Po 4=0 m=—w n=—-w

- exp (—i2nng [/Q) exp (ind) (48)

with a similar form for j,(¢#,z). Thus, on comparing with
(5) and (6), it is evident that the essential modification of
the formulation is to introduce the factor exp (—i2nng/Q)
with a summation over the number of separate helices. In
dealing with the left-handed helices, we introduce a cor-
responding factor exp (+i2znng/Q).

The boundary condition indicated by (30) still may be
applied at the one helix only. The resulting coupled equation
to determine the coefficients 7, is again given by the follow-
ing modification of (35):

2n

a) @

-4

cos Y

jz(¢’z) =

Q-1 + 0
¥ { Y R,.exp (—m 2mc )exp (—iz—mﬂ)Im
=0 == psinc 0}
P . 2nc
+ Z R2n+m,n €Xp (_ln N )
2= = o0 psinc
- exp (+i 272‘1) 12,,+m} + E,?d,,0 cos ¥
= Z,I,. 49

Actually, there is some simplification to (48) and (49) by
noting that

Q-1 if n =
Y exp (Fi2nng/Q) = {(% gz # ;g

q=0

(50)

where / = 0,+1,+2,43,---

Another generalization that does not lead to any basic
difficulty, at least for symmetrical excitation, is to remove
the assumption of local uniformity of the excitation field.
This amounts to representing E,” itself as a harmonic
expansion in the azimuth direction about the cable axis.
Such a modification is only necessary, however, when the
cable cross section becomes comparable with a wavelength.,
In that case, we would also need to account for the presence
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of the transverse components of the exciting fields, in which
case the filamental currents on the counterwound helices
are no longer the same. In this situation, we would also
need to be concerned with whether the counterwound
helices were bonded at their intersections. In analog to the
work on planar wire meshes (e.g., Hill and Wait [9]), the
difference between bonded and unbonded wire intersections
could be significant for the nonsymmetrical component
of the excitation field. One method to analyze this situation
is to allow the right-handed and the left-handed helices
to have slightly different radii, For the symmetrical excita-
tion, which in fact is a good approximation at low fre-
quencies, the final results would not be very sensitive to
the difference between the helix radii. Thus we should not
expect the bonding to have a major influence on the low-
frequency performance of the cable. Nevertheless, this is a
subject that should be investigated in a quantitative sense.

The influence of a dielectric jacket and/or lossy external
coating on the cable can be considered in a straightforward
manner. Basically, this amounts to introducing radial wave
functions in the region external to the sheath that satisfy
the appropriate boundary conditions at the one or more
new cylindrical interfaces. Finally, we should mention that
the corresponding natural modes of propagation on the
composite structure are obtained by simply letting the
incident field be zero and then setting the (infinite) deter-
minant of the coefficients of I, in (35) or (49) to zero and
solving for the propagation constant(s) ifi,. Such solutions
would include the surface waves that have their energy
confined to the region of the sheath.

In Part II, we consider the numerical aspects of this
general problem and the results are applied to spemﬁc
cable configurations.

APPENDICES
A. A Note oN CONVERGENCE

The series over #n have the following form:

+ o0

27c
A, exp | —in .
2 P [ psin l/l]

n=—-o

S =

(D

The convergence may be very poor since ¢ is small. Thus,
as in other similar problems, there is some merit in sum-
ming the higher order terms in closed form by making use
of the fact that the coefficient 4, admits to an asymptotic

expansion of the type
AW
-+ -’—12— + - ) .

lim A, ~ +n (A(O)

(In}= )

(52)

This suggests that we write

0 1) .
S=4dy+ Y (A,, — nA® _ i—) exp [—in _2_”-9_]
n=1 ) p sin Y

n
w© 1)
+ Y (A_,, — nA® — A )
n=1 n
. 2mc
exp | +in — + AS (53)
p sin
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where
2nc
p sin

AS = 24W » 1 cos n
T n

- —24M 1y (2 sin —27¢ ) (54)
: psin y

Here we have utilized the fact that

+ o0
Y nexp(tinx) =0

n=—c

for all real x > 0.

B. FIELD AVERAGING

In general, a field component Y has the following doubly
infinite series representation

¥ 5 v oxp (= iBns2) oxp (ind) (55

B=—00 n1=—0

lﬁ:

where ¥, , is a coefficient that does not depend on the
coordinates ¢ and z. Now when dealing with a coaxial
cable with electrically small radius and for the case where
the axial period of the braid is small, the far field scattered
from the cable only involves the term for n = m = 0. It
also follows rather simply that the “average” field ¥ near
or at the cable also can be described by this term. This
follows from the fact that

v-1 f [ f b 4| xp (o) dz = Y. (56

In view of this reasoning, it follows that a suitable defini-
tion of the effective axial impedance Z,(iff,) of the cable is

Ze(iﬁo) = Ez/(27rpH¢)

P=po

~ Ey, — Uo,oon,oKo(Uo,oPo)

57
2riggwAg o S

where v, o = i%,. This quantity is a useful description of
the cable when its behavior in a more complicated environ-
ment is to be considered. It is stressed that Z,(if,) is a
function of axial wavenumber.
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Vector Variational Formulation of
Electromagnetic Fields in
Anisotropic Media

A. KONRAD, MEMBER, IEEE

Abstract—Maxwell’s equations can be cast into a basic differential
operator equation, the curlcurl equation, which lends itself easily to
variational treatment. Various forms of this equation are associated
with problems of practical importance. The formulation includes the
treatment of loss-free anisofropic media. The boundary conditions
associated with electromagnetic-field problems are treated in detail and
the uniqueness of the solution is discussed. A functional is derived for
the curlcurl equation in Cartesian and cylindrical coordinates.

I. INTRODUCTION

UE TO the broad variety of practical applications

of waveguides, resonators, and other microwave
devices, the development of methods to solve the associated
electromagnetic-field problems has received a great deal of
attention in the past two decades. Such electromagnetic
boundary value problems, with the exception of isotropic
waveguides, require a formulation in which the electric
and magnetic fields are treated as vector quantities. In
recent years, a-variety of methods for the solution of
homogeneous isotropic waveguide problems appeared in
the literature; these have been reviewed by Wexler [1],
by Davies [2], and by Ng [3]. With a few exceptions [4]-
[91, [29], the tendency in recent years was to formulate
the inhomogeneous isotropic waveguide problem in terms
of the longitudinal electric (E,) and magnetic (H,) field
components [10]-[18].

As noted by Wexler [1] in 1969, there have been many
proponents and only a few attempts to formulate electro-
magnetic-field problems in terms of all three components
of the field vectors. Among the attempts one must mention
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Harrington’s well-known monograph [4] and Gupta’s
doctoral dissertation [5] on field solution in resonant
cavities filled with an inhomogeneous anisotropic medium.
The moment method employed by these authors is es-
sentially a projective method in which the field components
in a cavity or waveguide are expanded in terms of the field
components of the empty cavity or waveguide modes.

In 1967 Hannaford [10] proposed an extension of his
variational/finite difference method for homogeneous
isotropic waveguides to plasma- and ferrite-filled wave-
guides. Hannaford’s proposal involves only the longitudinal
field components. For inhomogeneous media, the resulting
coefficient matrix in Hannaford’s formulation becomes
indefinite above the 45° ““air-line” on the dispersion diagram.
Since 1967, this shortcoming of two-component formula-
tions has reoccurred in a number of other finite-difference
and finite-element variational methods [11]-[17]. Hanna-
ford dismissed Berk’s often quoted variational expressions
which were published in 1956 [6] as being more complicated
than the E~H, formulation. Berk derived three- and six-
component vector variational expressions in the form of
Rayleigh quotients for the resonance frequencies of a
resonator filled with loss-free, anisotropic, homogeneous
or inhomogeneous media.

The only three-component vector variational formula-
tion for electromagnetic-field problems appearing in recent
years is due to English and Young [7]. They select the
E-field formulation over H on the basis of the number of
Dirichlet boundary conditions to be satisfied. The authors
list the advantages of the three-component vector formula-
tion as reduced matrix size and denser coefficient matrices
in comparison with the six-component formulation given
by English in his doctoral dissertation [8] and‘in two papers
by English [9], [23] which appeared in 1971. However,



